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Uncertainty quantification schemes based on stochastic Galerkin projections, with global
or local basis functions, and also stochastic collocation methods in their conventional form,
suffer from the so called curse of dimensionality: the associated computational cost grows
exponentially as a function of the number of random variables defining the underlying
probability space of the problem. In this paper, to overcome the curse of dimensionality,
a low-rank separated approximation of the solution of a stochastic partial differential
(SPDE) with high-dimensional random input data is obtained using an alternating least-
squares (ALS) scheme. It will be shown that, in theory, the computational cost of the pro-
posed algorithm grows linearly with respect to the dimension of the underlying probability
space of the system. For the case of an elliptic SPDE, an a priori error analysis of the algo-
rithm is derived. Finally, different aspects of the proposed methodology are explored
through its application to some numerical experiments.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The behavior and evolution of complex systems are known only partially due to lack of knowledge about the governing
physical laws or limited information regarding their operating conditions and input parameters (e.g. material properties).
Uncertainty quantification (UQ) plays a crucial role in the construction of credible mathematical/computational models
for such systems. In this work problems governed by a set of partial differential equations (PDEs) are considered. The uncer-
tain parameters are introduced using available observations and are described as random variables/processes in a probabi-
listic framework. A computational model is then defined to approximate the statistics of the solution of these PDEs, thus
propagating the uncertainty from the input parameters to the response of the system.

Monte Carlo sampling has been utilized for a long time as a general purpose scheme for uncertainty propagation. Recently
there has been an increasing interest in developing more efficient computational models for the analysis of uncertain sys-
tems as Monte Carlo techniques are known to have slow rate of convergence. In particular, perturbation-based techniques,
[14], are shown to be effective for situations where input parameters exhibit small variabilities. Stochastic Galerkin schemes,
[11,6,28,17,2,26], have been successfully applied to problems arising from different areas of engineering and are extremely
useful for situations in which the number of uncertain parameters is not large. More recently, there has been a great amount
of attention to collocation-based techniques that take advantage of existing deterministic solvers for moderate Oð10Þ number
of uncertain variables [24,18,27,1,20,19].

In many applications one has to deal with a large number of uncertain input parameters. In such situations, with the
exception of the Monte Carlo technique, the methods mentioned above suffer from the so called curse of dimensionality: their
. All rights reserved.
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computational cost grows exponentially as a function of the number of random variables defining the underlying probability
space of the problem. More specifically, the computational cost of the stochastic Galerkin schemes with global polynomials,
e.g. Wiener Hermite chaos, [11], depends on the number of terms in the solution expansion. For the case of order p approx-
imation in d independent random variables, the cardinality of the associated basis is P ¼ ðpþ dÞ!=p!d! which increases expo-
nentially with respect to p and d. Model reduction techniques have been developed in [7,10,22,21] to reduce this drawback
for the case of stochastic Galerkin schemes.

Stochastic collocation schemes, [27,1,20,19] based on isotropic and anisotropic sparse grids reduce the problem of
curse of dimensionality normally associated with conventional tensor-product schemes. The computational cost of the sto-
chastic collocation scheme using a tensor-product grid and isotropic sparse-grid constructed from M points in each direction
of a d-dimensional space is OðMdÞ and OðCdMðlog MÞd�1Þ, respectively. Note that both estimates grow exponentially with re-
spect to d.

In this work a novel, alternative approach is investigated; the present approach extends the alternating least-squares (ALS)
approximation technique of [3,4] to obtain a separated representation of the solution to partial differential equations with
high-dimensional random inputs. In theory, the computational cost of this algorithm grows linearly with respect to the
dimension of the probability space of the system. The fundamental feature of the proposed technique that addresses the
curse of dimensionality is the adoption of a low-rank separated representation of functions in the high-dimensional proba-
bility space. The proposed approach is fundamentally different from stochastic Galerkin and collocation schemes. More spe-
cifically, it deviates from stochastic Galerkin schemes by not assuming any pre-determind basis along the stochastic
dimension for the approximation. It is also different from stochastic collocation schemes as it does not solve the problem
on the quadrature grid exactly.

The paper is organized as follows. Section 2 summarizes the separated representation of a d-dimensional function as well
as the ALS algorithm of [3,4] to construct such representation. For the sake of consistency throughout this section, a similar
notation to that of [3,4] is adopted. Following that, in Section 3, it will be shown how one can cast the discrete analog of the
governing SPDE in a form that can be readily incorporated in the separated approximation framework. Finally, in Section 4,
numerical experiments are performed on a one-dimensional (1D) elliptic and a two-dimensional (2D) hyperbolic SPDE, each
with 30-dimensional probability space, to illustrate the performance of the proposed procedures.
2. Separated representations and the ALS algorithm

Separation-of-variable techniques have been widely used to approximate high-dimensional functions using one-dimen-
sional operations, thus virtually eliminating the curse of dimensionality, see [23,16,15,3,25,13,4] and references therein. Let
u be a d-dimensional function. It can be approximated as
uðy1; � � � ; ydÞ � /1ðy1Þ � � �/dðydÞ: ð1Þ
The above approximation can be improved by introducing a series of such representations,
uðy1; � � � ; ydÞ ¼
Xr

l¼1

sl/
l
1ðy1Þ � � �/l

dðydÞ þ Oð�Þ; ð2Þ
which is called a separated representation with separation rank r. Given a target accuracy �, the approximation (2) can be
achieved by tailoring unknown quantities f/l

iðyiÞg; fslg, and an optimal separation rank r, for instance, through a nonlinear
optimization scheme. For general functions, the separated representation (2) is not unique. However, any separated approx-
imation satisfying the accuracy � is acceptable. The main advantage of adopting the separated representation (2) is that
many algebraic operations in d dimensions can be performed using a series of one-dimensional operations. Therefore, in the-
ory, the computational efforts increase only linearly with respect to d. The goal is to present the ALS algorithm of [3,4] for the
separated representation of the solution of a linear system of equations arising from spatial/temporal discretization of SPDEs
using only one-dimensional operations. To achieve this objective some preliminary notations and definitions are introduced.

Notation 1. A scalar function uðy1; � � � ; ydÞ in d dimensions is a mapping from the Euclidean space Rd to the real line
R;u : Rd ! R. A vector u � uðj1; � � � ; jdÞ with jk ¼ 1; � � � ;Mk is a discrete representation of function u on a d-dimensional
tensor-product grid G with

Qd
k¼1Mk nodes. Without loss of generality it is assumed that the grid is isotropic, i.e. Mk ¼ M for

k ¼ 1; � � � ; d.

Definition 1 ([3,4] (Separated representation of a vector)). Let � denote the Kronecker product. For a given accuracy, �, a vec-
tor u ¼ uðj1; � � � ; jdÞ in d dimension is approximated by
Xr

l¼1

slul
1ðj1Þul

2ðj2Þ � � �ul
dðjdÞ �

Xr

l¼1

slul
1 � ul

2 � � � � � ul
d; ð3Þ
with sl 2 R being a scalar and ul
k 2 RM a one-dimensional vector with entries ul

kðjkÞ and unit Euclidean norm. The approxi-
mation error is required to be less than �, i.e.
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ku�
Xr

l¼1

slul
1 � ul

2 � � � � � ul
dk 6 �; ð4Þ
where k � k denotes the Frobenius norm over G.
2.1. Reducing the separation rank r using ALS

Let v be a function whose discrete form v has a large separation rank rv . The ALS algorithm aims at reducing the separa-
tion rank of v while maintaining an accurate representation. More specifically, let
v ¼
Xrv

l¼1

sv
l vl

1 � vl
2 � � � � � vl

d ð5Þ
with large rv . Given an accuracy �, the goal is to find
uM
� ¼

Xru

l¼1

su
l ul

1 � ul
2 � � � � � ul

d; ð6Þ
with ru � rv such that
kv � uM
� k 6 �: ð7Þ
It is assumed that such lower separation rank approximation of v exists, otherwise the ALS reduction algorithm is not useful.
For a fixed ru, one can minimize the distance between v and u, in the Frobenius sense over G, by adapting ful

ig and fsu
l g.

Due to the already separated form of v and uM
� such minimization can be performed, for instance, in the form of a sequence of

linear one-dimensional least-squares problems which is referred to as alternating least-squares (ALS) algorithm.
Alternating least-squares (ALS) algorithm. For a fixed ru, an initial guess for u is constructed by randomly initializing ful

ig
and thus su

l . The optimization steps are then as follows [3,4].

� Loop over dimensions k ¼ 1; � � � ; d

– Loop over grid points jk ¼ 1; � � � ;M in direction k

Fix fu~l
igi–k and solve the following normal equation associated with a linear least-squares problem to update fu~l

kg
and thus su

~l
:

Bcjk ¼ bjk ; ð8Þ
with
Bð̂l;~lÞ ¼
Y
i–k

hul̂
i;u

~l
ii
and
bjk ð̂lÞ ¼
Xrv

l¼1

sv
l v l

kðjkÞ
Y
i–k

hvl
i;u

l̂
ii:

– Update su
~l
¼

P
jk

c2
jk
ð~lÞ

� �1=2
and u~l

kðjkÞ ¼ cjk ð~lÞ=su
~l

, where ~l ¼ 1; � � � ; ru and jk ¼ 1; � � � ;M.
Here h�; �i denotes the usual inner-product of two vectors. The above algorithm monotonically reduces the difference be-

tween v and u until the rate of the reduction is small. If the desired accuracy has not been achieved, the rank ru must be
increased to reduce the error further. It is in general not possible to determine the optimal rank ru a priori. However, in order
to achieve a near-optimal rank ru, it is proposed to start from a low separation rank, e.g. ru ¼ 1, and reduce the representa-
tion error using the ALS algorithm and, if necessary, increase ru until kv � uM

� k 6 � is attained. The overall procedure is then
summarized as:

Separation rank reduction algorithm:

� Set ru ¼ 1; (randomly) initialize fu1
i g and su

1 .
� Loop while kv � uM

� k > �.
– Perform the ALS algorithm until kv � uM

� k does not decrease much.
– Set ru ¼ ru þ 1; (randomly) initialize furu

i g and su
ru

.

It is shown in [3,4] that one full ALS iteration, as described above, requires Oðd � ruðr2
u þ rv �MÞÞ operations. In theory, as far

as ru is finite and does not depend on d, the complexity of ALS algorithm scales linearly with d. However, in practice, ru may
depend mildly on d; therefore the computational cost of the above ALS scheme is nearly linear with respect to d.
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2.2. Regularization

In general, the problem (7) is ill-conditioned due to loss of precision and thus requires regularization. A simple Tikhonov
regularization of (7) has been proposed in [4] which aims at controlling the condition number,
j �
Pru

l¼1ðsu
l Þ

2
� �1=2

kuM
� k

; ð9Þ
of the separated representation uM
� . More specifically, to prevent the loss of significant digits and to achieve the approxima-

tion (7), one has to satisfy jlkuM
� k 6 �, where l is the machine precision. Practically, such regularization can be imple-

mented by simply replacing B with Bþ kI in Eq. (8) and choosing the scalar k slightly larger than l [4]. Here I denotes
the identity matrix of the same size of B.

In the following, the ALS scheme will be applied to the solution of the linear system of equations arising from spatial-tem-
poral discretization of an SPDE.
3. Solution of an SPDE

3.1. Problem definition and numerical method

Consider a linear partial differential equation with stochastic operator and forcing, and let uðx; t;xÞ be the solution in
D	 ½0; T
 	X! R, such that the following equation holds almost surely in X,
Lðx; t;x; uÞ ¼ f ðx; t;xÞ ðx; tÞ 2 D	 ½0; T

uðx; t;x; uÞ ¼ gðx; tÞ ðx; tÞ 2 @D	 ½0; T

uðx;0;xÞ ¼ hðx;xÞ x 2 D;

ð10Þ
where X is the set of elementary events and x 2 X;D and T denote the spatial extent and the time interval of the problem,
respectively. The randomness in the problem is induced by the uncertainty in the underlying parameters of the correspond-
ing physical system, e.g. heat conductivity, viscosity, initial conditions, etc., and is assumed to be a function of a finite, pos-
sibly very large, number of random variables. Such representation can be obtained through, for instance, spectral
decomposition of the covariance kernel of the underlying (second-order) random fields/processes which is referred to as
Karhunen–Loeve expansion. Therefore, the random differential operator of (10) can be represented as
Lðx; t;x; uÞ ¼L x; t; y1ðxÞ; � � � ; ydO
ðxÞ; u

� �
; ð11Þ
where fykg
dO
k¼1 are random variables, e.g. Karhunen–Loeve expansion random variables, that define the finite-dimensional

noise in L. Similarly, one can rewrite f ðx; t;xÞ ¼ f ðx; t; y1ðxÞ; � � � ; ydf
ðxÞÞ and hðx;xÞ ¼ hðx; y1ðxÞ; � � � ; ydh

ðxÞÞ.
In the present work, it is assumed that random variables fykg

d
k¼1 with d � dO þ df þ dh are independent random variables

with probability density functions fqkg
d
k¼1, respectively. Let Ck � ykðXÞ be the image of the random variable ykðxÞ; the

underlying probability space C is the product of images of random variables ykðxÞ, i.e. C �
Qd

k¼1Ck.
The solution of (10) is a mapping of fx; t; y1ðxÞ; � � � ; ydðxÞg, i.e.
uðx; t;xÞ :¼ uðx; t; y1ðxÞ; � � � ; ydðxÞÞ; ð12Þ
which is in general nonlinear.
Considering a spatial-temporal discretization scheme, the semi-discrete equivalent form of (10) typically simplifies to

solution of a random linear system of equations of the form
AnðxÞunðxÞ ¼ fnðxÞ 8 n; ð13Þ
where n denotes the index associated with the time integration scheme and is henceforth omitted for the sake of a simpler
notation. In the present study, it is assumed that the random matrix AðxÞ and the random vector fðxÞ in (13) admit a sep-
arated representation with respect to their coordinates fy1ðxÞ; � � � ; ydðxÞg. For the case of linear problem (10), such setting is
readily available once the corresponding uncertain parameters are characterized in a separated representation, for instance,
through a procedure similar to Karhunen–Loeve expansion (here with independent random variables) or a polynomial chaos
expansion (possibly with large separation rank that can be further reduced using the ALS algorithm). When large samples of
stochastic processes representing the uncertainty in the system are available, a more consistent approach is to use proce-
dures of [5]. On the other hand the formalism of [9] can be employed when the uncertain parameters are assimilated based
on the available (possibly limited) data. Consequently, the discrete representation of (13) on a tensor-product grid G consist-
ing of M nodes along each direction yk (total of Md nodes) reads,
XrA

l¼1

Al
0 �Al

1 � � � � �Al
d

 !
u ¼

Xrf

l¼1

f l
0 � f l

1 � � � � � f l
d: ð14Þ
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Al
0 2 RN;N and f l

0 2 RN are deterministic (sparse) matrices and vectors, respectively, whose size, N, is determined by the spa-
tial discretization scheme and are obtained from the discretization of deterministic modes in the representation of under-
lying stochastic fields. For k ¼ 1; � � � ; d, the diagonal matrices Al

k 2 RM;M and vectors f l
k 2 RM hold quadrature values in the

finite-dimensional representation of corresponding stochastic fields. Finally, u is the tensor-product representation of the
solution to be calculated. In general, the construction of separated representations of the coefficient tensor A and the
right-hand-side tensor f in (14) along with their separation ranks rA and rf , respectively, depend on the SPDE, the spatial-
temporal discretizations, and how the finite-dimensional noise representations are obtained. One example of such construc-
tion is provided in Section 4.1.

Remark 1. Notice that the representation (14) is in fact a compact notation for the tensor-product stochastic collocation
approximation of (13) on G. The solution u in (14) is therefore the solution of the tensor-product stochastic collocation
applied to (13). The procedure proposed here, however, departs from the collocation approach by approximating the solution
u on G, within the class of separated representations, and not evaluating it exactly at the quadrature points. As is described in
more details in what follows, such approximation allows one to break the issue of curse of dimensionality associated with
the tensor-product collocation approach.
3.2. Separated approximation of (14) using ALS

A separated representation of u with low separation rank is used to approximate the solution of (14). This can be achieved
as in Section 2.1 using the ALS algorithm. In particular,
uM
� �

Xru

l¼1

su
l ul

0 � ul
1 � � � � � ul

d; ð15Þ
is sought such that
XrA

l̂¼1

Al̂
0 �Al̂

1 � � � � �Al̂
d

Xru

l¼1

su
l ul

0 � ul
1 � ul

2 � � � � � ul
d

 !
�
Xrf

~l¼1

f
~l
0 � f

~l
1 � � � � � f

~l
d

������
������ 6 �; ð16Þ
for a desired accuracy �. To this end, the separated rank reduction algorithm of Section 2.1 is modified as follows.
Separation rank reduction algorithm:

� Set ru ¼ 1; (randomly) initialize fu1
i g

d
i¼0 and thus su

1 .
� Loop while kf �AuM

� k > �.
– Perform a modified ALS algorithm, as described below, until kf �AuM

� k does not decrease much.
– Set ru ¼ ru þ 1; (randomly) initialize furu

i g
d
i¼0 and thus su

1 .
Due to spatial-temporal discretization of (10), one has to solve different normal equations in the alternating least-squares
algorithm of Section 2.1. The modified normal equations for updates along the spatial direction, k ¼ 0, and each random
direction yk; k ¼ 1; � � � ; d, are as follows.

Modified normal equations. Let J ¼ N when k ¼ 0 and J ¼ M when k ¼ 1; � � � ; d. For each k ¼ 0;1; � � � ; d, the quantities fu~l
kg

ru
~l¼1

are simultaneously updated by solving the following normal equation,
Bc ¼ b; ð17Þ
where B contains ru 	 ru blocks with size J 	 J. The ð̂l;~lÞth block is obtained from
Bð̂l;~lÞ½i
0
; j0
 ¼

XrA

l¼1

XrA

�l¼1

XJ

j¼1

Al
k½j; i

0
A�l
k½j; j

0

 !Y

i–k

hAl
iu

~l
i;A

�l
iu

l̂
ii: ð18Þ
Moreover b contains ru vectors each with size J where the l̂th component is computed as
bl̂ði
0Þ ¼

Xrf

l¼1

XrA

�l¼1

XJ

j¼1

A
�l
k½j; i

0
f l
kðjÞ

 !Y
i–k

hf l
i;A

�l
iu

l̂
ii: ð19Þ
Finally, su
~l
¼ ð
P

jk
c2

~l
ðjkÞÞ

1=2 and u~l
kðjkÞ ¼ c~lðjkÞ=su

~l
for all ~l ¼ 1; � � � ; ru.

Note that for updates along random directions, k ¼ 1; � � � ; d, the linear system (17) decouples into M smaller linear sys-
tems each with size ru 	 ru for each nodal point jk. However, when k ¼ 0 the linear system (17) is coupled according to
the spatial discretization and thus has the size ðN � ruÞ 	 ðN � ruÞ.

In practice, the linear system (17) is not formed explicitly, particularly when updates along spatial direction x, i.e. k ¼ 0,
are performed. Depending on the choice of the solver, the linear system (17) can be solved by only matrix–vector multipli-
cations and vector–vector dot-products in which the major memory requirement is due to having sparse matrices fAl

0g
rA

l¼1

and vectors ff l
0g

rf
l¼1 stored. In the present study, a preconditioned conjugate gradient solver is employed; an incomplete

LU decomposition of the mean of the random matrix AðxÞ, i.e. A1
0, is used as the preconditioner.
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A thorough discussion on the order of computations required to cast and solve (17) with an explicit solver, which requires
more computations compared to iterative ones, is presented in [4]. There, it is shown that, in theory, when ranks rA; rf , and ru

are small and independent of d, the computational cost of a full ALS iteration from k ¼ 0 to k ¼ d, remains linear with respect
to d. For cases where iterative solvers with matrix–vector and vector–vector operations are employed, as in the present
study, the computational cost of a full ALS iteration with updates along k ¼ 0 to k ¼ d is much less than those of explicit solv-
ers with the order remaining linear in d. However, in some practical situations, rA; rf , and ru might mildly depend on d which
results in an increase in the computational cost to more than linear growth.

Remark 2. Similar to tensor-product stochastic collocation schemes, the choice of grid points jk affects the convergence and
the accuracy of the approximation. In the present work, based on the distribution of the random variables yk, quadrature
rules are used to distribute these abscissas along each direction yk.

Remark 3. In practice, it is more natural to monitor the convergence of the ALS algorithm based on the normalized norm of
the residual rather than the norm of the residual itself. Throughout the rest of this study, the condition kf �AuM

� k 6 �kfk is
used as the stopping criterion.
3.3. Response statistics

The computation of response statistics for the proposed technique follows that of a tensor-product stochastic collocation
technique [27,1] except that the computational cost grows linearly with respect to dimension d. Given the discrete solution
uM
� in Eq. 15, one can estimate the desirable statistics, e.g. moments, of u based on: (1) sampling from interpolating surface of

uM
� ; or (2) numerical integration using quadrature rules for its moments, e.g. mean and variance. In the following, these are

described in more details.
Statistics based on interpolation. A multi-dimensional interpolation technique with, for instance, Lagrange polynomials can

be employed to construct the solution response surface based on the nodal values of u along the random dimensions. Given
the separated solution uM

� , such interpolation is cast as a sequence of one-dimensional interpolations, hence, resulting in a
total computational cost that grows linearly with respect to d. More specifically, let IðuM

� Þðy1; � � � ; ydÞ : RN 	 G! RN 	 C de-
note the interpolation of the random solution uM

� in C, then
IðuM
� Þðy1; � � � ; ydÞ ¼

Xru

l¼1

su
l ul

0

Yd

k¼1

Iðul
kÞðykÞ; ð20Þ
where
Iðul
kÞðykÞ ¼

XM

jk¼1

ul
kðjkÞLjkðykÞ; 8 k; l; ð21Þ
is the one-dimensional interpolation along direction yk and Ljk ðykÞ is the Lagrange polynomial corresponding to the node jk.
Desirable statistics of uM

� are then computed by sampling from IðuM
� Þðy1; � � � ; ydÞ.

Statistics based on quadrature integration. The integral-form statistics, e.g. moments, of the response quantities of interest
can be obtained as a sequence of one-dimensional quadrature integrations once their separated representation is available.
For instance, the estimate of the mean and second moment of the nodal solution vector u is obtained as
E uM
�

� �
¼
Z

C
uM
� ðy1; � � � ; ydÞ

Yd

k¼1

ðqkdykÞ ¼
Xru

l¼1

su
l ul

0

Yd

k¼1

Z
Ck

ul
kðykÞqkdyk

 !
¼
Xru

l¼1

su
l ul

0

Yd

k¼1

XM

jk¼1

ul
kðjkÞwjk

 !
ð22Þ
and similarly
E ðuM
� Þ

2
h i

�
Z

C
uM
� � uM

�

� �
ðy1; � � � ; ydÞ

Yd

k¼1

ðqkdykÞ ¼
Xru

l¼1

Xru

�l¼1

su
l su

�l ðu
l
0 � u

�l
0Þ
Yd

k¼1

XM

jk¼1

ul
kðjkÞu

�l
kðjkÞwjk

 !
; ð23Þ
respectively. In Eqs. (22) and (23), E is the mathematical expectation operator, � denotes the Hadamard product of two vec-
tors, and wjk is the weight associated with the quadrature point jk.

3.4. Error analysis

In this Section, an a priori error analysis of the proposed scheme is provided. It will be demonstrated how the error decays
as the approximation is refined by simultaneously increasing grid points M along random directions and decreasing the tar-
get accuracy � in the separated approximation of the solution. In particular, the present error analysis is obtained for the
random linear system of Eq. (13) arising from a symmetric spatial discretization of a linear elliptic SPDE of the form,
�r � ðaðx;xÞruðx;xÞÞ ¼ f ðx;xÞ; x 2 D;

uðx;xÞ ¼ 0; x 2 @D;
ð24Þ
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that holds almost surely in X and x 2 X. Under some standard regularity conditions on the stochastic functions a and
f : D	X! R, the problem (24) is well-posed and its solution u is analytic with respect to fykg

d
k¼1 that characterize the fi-

nite-dimensional noise representation of a and f : D	 C! R, [1]. In particular, it is assumed that 0 < aðx; y1; � � � ; ydÞ <1 al-
most surely in C and 8x 2 D.

Proposition 1. Let u be the exact solution of (13) associated with problem (24). Let IðuM
� Þ, as in (20), be the interpolation of

separated approximation of u based on M Gaussian quadrature nodes corresponding to probability density functions qk and with a
target accuracy � for the ALS algorithm of Section 3. Then for some constants C1 and C2 independent of M and �,
ku�I uM
�

� �
kL2ðRNÞ�L2ðCÞ 6 C1ðr; dÞe�rM þ C2�KðAÞkukL2ðRNÞ�L1ðCÞ; ð25Þ
where d is the dimension of the random space, r depends on the smoothness of u with regard to fykg
d
k¼1 [1], and

KðAÞ � kAk � kA�1k is the condition number of the discrete representation of A on the tensor-product grid G.

Proof. Let IðuÞ : RN 	 G! RN 	 C be the Lagrange interpolation of the exact solution u on G. Then,
ku�I uM
�

� �
kL2ðRNÞ�L2ðCÞ 6 ku�IðuÞkL2ðRNÞ�L2ðCÞ þ kIðuÞ �I uM

�

� �
kL2ðRN Þ�L2ðCÞ; ð26Þ
where ku�IðuÞkL2ðRNÞ�L2ðCÞ is identical to the error arising from a tenor-product stochastic collocation (using G) applied to
problem (13). From [1],
ku�IðuÞkL2ðRN Þ�L2ðCÞ 6 C1ðr;dÞe�rM ; ð27Þ
in which r is related to the smoothness of u in C. The second term on the right-hand-side of inequality (29),
kIðuÞ �IðuM

� ÞkL2ðRNÞ�L2ðCÞ, is due to the separated approximation of the tenor-product stochastic collocation solution and de-
cays by decreasing �. Let wjk be the Gaussian quadrature weights corresponding to abscissas jk ¼ 1; � � � ;M. Under some mild
constraints (c.f. [8]) on the probability density functions qk associated with random variables yk with bounded ranges, the
maximum Gaussian quadrature weight satisfies, [8],
max
jk

wjk 6
Cq

M
; ð28Þ
where Cq is a constant that depends on the type of quadrature rule (e.g. Legendre–Gaussian quadrature vs. Chebyshev–
Gaussian quadrature) and is independent of M. As a result of (28) and the linearity of the interpolation operator together
with other properties of Gaussian quadrature integration, the proof proceeds as
kIðuÞ �I uM
�

� �
k2

L2ðRNÞ�L2ðCÞ ¼ kI u� uM
�

� �
k2

L2ðRNÞ�L2ðCÞ ¼
X

j0

X
j1

� � �
X

jd

ðuðj0; j1; � � � ; jdÞ � uM
� ðj0; j1; � � � ; jdÞÞ

2
Yd

k¼1

wjk

6 max
jk

wjk

	 
d

ku� uM
� k

2
L2ðRNÞ�L2ðRMd Þ 6

Cq

M

	 
d

�2K2ðAÞkuk2
L2ðRNÞ�L2ðRMd Þ

6 Cd
q�

2K2ðAÞkuk2
L2ðRNÞ�L1ðRMd Þ

6 Cd
q�

2K2ðAÞkuk2
L2ðRNÞ�L1ðCÞ;
where,
ku� uM
� kL2ðRN Þ�L2ðGÞ 6 �KðAÞkukL2ðRNÞ�L2ðGÞ
is obtained from standard matrix analysis techniques [12]. h
4. Numerical examples

In this section, two numerical examples are considered to verify the proposed algorithm for the solution of SPDEs with
high-dimensional random inputs. In the first example, the method of manufactured solution (MMS) is employed as a verifi-
cation means for the separated approximation of an elliptic SPDE in one physical dimension (1D). The second example illus-
trates a 2D unsteady scalar transport equation with random diffusion and inflow velocities.

4.1. Example I: 1D elliptic SPDE

Consider the following one-dimensional stochastic elliptic equation that holds a.s. in X:
� @

@x
aðx;xÞ @uðx;xÞ

@x

	 

¼ f ðx;xÞ x 2 D ¼ ð0;1Þ

uð0;xÞ ¼ uð1;xÞ ¼ 0:
ð29Þ
The coefficient aðx;xÞ is represented by



Fig. 1. (a) and (b): convergence of the residual r ¼ f �AuM
� for r~u1

¼ 1 and r~u2
¼ 2, respectively. (c) and (d): L2ðDÞ 	 L2ðCÞ convergence of the separated

approximation uM
� for r~u1

¼ 1 and r~u2
¼ 2, respectively, (e) and (f): rank of the approximate solution, ru , in each ALS iteration for r~u1

¼ 1 and r~u2
¼ 2,

respectively. For all cases smallest target accuracy � ¼ 1	 10�5 is considered.

A. Doostan, G. Iaccarino / Journal of Computational Physics 228 (2009) 4332–4345 4339
aðx;xÞ ¼ �aþ r
Xda

k¼1

cosð2pkxÞykðxÞ; ð30Þ
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with fykg
da
k¼1 i.i.d. uniform random variables Uð�1;1Þ; �a ¼ 50;r ¼ 1 and da ¼ 30. Notice that given the above setting, aðx;xÞ is

strictly positive on D	X. The method of manufactured solution (MMS) is utilized to verify the solution of the proposed
scheme with a finite element discretization of (29). Two manufactured solutions
−

−

Fig. 2.
directio
ru ¼ 2,
~u1ðx;xÞ ¼ sinðpxÞy2
1ðxÞy2

2ðxÞ and
~u2ðx;xÞ ¼ sinðpxÞy2

1ðxÞy2
2ðxÞ þ 0:1 sinð10pxÞy2

4ðxÞy2
5ðxÞ

ð31Þ
with ranks r~u1
¼ 1 and r~u2

¼ 2, respectively, are considered. The corresponding manufactured inputs ~f 1 and ~f 2 are then ob-
tained from ~f j � � @

@x ðaðx;xÞ
@~ujðx;xÞ

@x Þ for j ¼ 1;2. Consequently, ~u1 and ~u2 are the exact solutions of (29) with f ¼ ~f 1 and f ¼ ~f 2,
respectively. A linear finite element discretization of (29) with uniform mesh size h ¼ 1	 10�5 is considered. Such resolution
leads to a spatial discretization error that is not dominant in the approximation. The convergence of the proposed scheme to
the exact (manufactured) solution, with respect to different number of quadrature points M and smallest target accuracy
� ¼ 1	 10�5, is explored. The tensor-product grid G is constructed by distributing M points along each direction yk based
on the Clenshaw–Curtis rule, i.e.
ykðjkÞ ¼ � cos
pðjk � 1Þ

M � 1
; jk ¼ 1; . . . ;M: ð32Þ
Notice that one may consider other types of quadrature, e.g Legendre–Gaussian quadrature, as well considering the fact
that the quality of the approximation of output statistics based on one rule is, in general, different from those of others. More
investigation of such discrepancy is outside the scope of this study.

For the case of r~u1
¼ 1, the semi-discretization of problem (29) leads to the linear system of equations
A1
0 þ

Xda

k¼1

Akþ1
0 ykðxÞ

 !
uðxÞ ¼ f1

0 þ
Xda

k¼1

fkþ1
0 ykðxÞy2

1ðxÞy2
2ðxÞ

 !
; ð33Þ
where sparse matrices A1
0;A

2
0; � � � ;A

daþ1
0 are obtained from the standard linear finite element discretization of the differential

operator of (29) when the coefficient aðx;xÞ is replaced by �a;r cosð2pxÞ; � � � ;r cosð2pdaxÞ, respectively. Similarly, vectors
f1

0; f
2
0; � � � ; f

daþ1
0 are computed by, first, sorting all terms in the right-hand-side of (29) with respect to contributions from ran-

dom variables yk and then calculating the finite element discretization of corresponding deterministic coefficients.
Notice that, in (33), the random matrix AðxÞ and random vector fðxÞ are already in separated form with respect to

fykg
da
k¼1 and with separation ranks rA ¼ rf ¼ da þ 1. Therefore, the discrete representation (14) of system (33) on G is readily

available by picking values of each univariate function, along fykg
da
k¼1, at quadrature points. For instance, let dij denote the

Kronecker’s delta, then A1
k ½i; j
 ¼ dij for k ¼ 1; � � � ; da;A

l>1
k ½i; j
 ¼ dijykðjÞ if l ¼ kþ 1 and Al>1

k ½i; j
 ¼ dij otherwise,
rf ¼ da þ 1; f1

kðiÞ ¼ 1; f2
2ðiÞ ¼ ðy2ðiÞÞ

2
; f3

1ðiÞ ¼ y1ðiÞ; f
3
2ðiÞ ¼ ðy2ðiÞÞ

3, and so on. Similar procedures are carried out for the case
of r~u2

¼ 2.
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Fig. 3. Schematic of the Example II geometry along with its Dirichlet ð@DD � @DD1

S
@DD2

S
@DD3 Þ and Neumann ð@DNÞ boundary conditions.
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Remark 4. In this example, the ranks of A and f are directly related to the problem dimension da, i.e. rA ¼ rf ¼ da þ 1, which
is simply a consequence of using a Karhunen–Loeve-type expansion for finite-dimensional noise representation of aðx;xÞ.
This will increase the computational cost of the algorithm to more than linear with respect to da, e.g. quadratic in da when an
iterative solver is used and N >> M. Alternatively, one can obtain the finite-dimensional noise representation of aðx;xÞ by
applying the separated rank reduction technique of this study on the stochastic differential operator itself to possibly achieve
rA < d. The interested reader is referred to [3–5] for more details.

Fig. 1(a) and (b) shows the decay of the residual, r � f �AuM
� , of the corresponding linear system for r~u1

¼ 1 and r~u2
¼ 2,

respectively. The root mean-square error k~u� uM
� kL2ðDÞ	L2ðCÞ is calculated based on the Lagrange interpolation of uM

� , as de-
scribed in Section 3.3, and is plotted in Fig. 1(c) and (d) for different values of �. Finally, the rank of the approximate solution
uM
� at any iteration of the ALS algorithm is shown in Fig. 1(e) and (f). For the case of r~u1

¼ 1 and when M ¼ 3;4, the ALS algo-
rithm converges with rank ru1 ¼ 1 and therefore identifies the rank of the exact solution ~u1. However, the solution fails to
converge with M ¼ 2 simply due to the fact that the second order terms in ~u1 are not captured when M ¼ 2. This is, clearly,
an indication of the role of number of quadrature points M in the overall convergence of the solution as described in Section
3.4. For the case of r~u2

¼ 2 and M ¼ 3;4 the algorithm performs five iterations with rank ru1 ¼ 1 until it increases the approx-
imation rank (ru2 ¼ 2) in order to achieve the target accuracy � ¼ 1	 10�5. When r~u2

¼ 2 and M ¼ 2, the residual of the ALS
approximation decays enough and the algorithm stops with ru2 ¼ 1 thus failing to detect the correct rank of the solution.

More interestingly, the components of uM
� along each direction x; y1; � � � ; yda

converge to the corresponding quantities of ~u
as � decreases and with sufficiently large M. This is depicted in Fig. 2 only for the case of r~u2

¼ 2 and when M ¼ 3.

4.2. Example II: 2D unsteady convection diffusion equation

A two-dimensional (2D) transient convection diffusion equation with stochastic velocity and diffusion fields are consid-
ered to model the transport of an scalar quantity (e.g. heat, concentration of a pollutant) in a random medium where the
convection effects are not known completely. The mathematical model for the random scalar field uðx; t;xÞ reads
Fig. 5.
obtaine
t ¼ 20D
Mean-square convergence of the solution mean and variance at three different time steps t ¼ 20Dt;70Dt;150Dt. The reference quantities are
d from a Monte Carlo simulation with a sample size of 106. The solid and dashed lines correspond to the solution mean and variance respectively. (a)
t, (b) t ¼ 70Dt, and (c) t ¼ 150Dt.



Fig. 6.
� ¼ 5	
t ¼ 20D
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@u
@t
þ v � ru ¼ r � ðaruÞ in D	 ½0; T
 	X;

u ¼ 0 on @DD 	 ½0; T
 	X;

ru � n ¼ 0 on @DN 	 ½0; T
 	X;

uðx;0;xÞ ¼ gðxÞ on D	X;

ð34Þ
and holds almost surely in X. Here, n is the unit vector normal to the boundary. The Dirichlet and Neumann boundary con-
ditions are denoted by @DD and @DN , respectively, and are schematically depicted in Fig. 3. The initial scalar field is modeled
by a Gaussian function gðxÞ ¼ expð�ðx� 0:5Þ2=0:12 � ðy� 0:5Þ2=0:12Þ defined on D ¼ ð0;1Þ2. The diffusion coefficient a and
velocity field v � ðvx;vyÞ are stochastic fields represented by a total of 30 independent random variables. More specifically,
aðx;xÞ ¼ �aþ ra

Xda

k¼1

1

k1=2 cosðkpxÞ cosðkpyÞykðxÞ; ð35Þ
where �a ¼ 0:01; da ¼ 10;ra ¼ 0:0018, and fykg
da
k¼1 are i.i.d. uniform random variables on Uð�1;þ1Þ. Notice that the construc-

tion (35) along with its particular choice of parameters lead to a strictly positive coefficient a on D	X. Finally, the diver-
gence-free random velocity field v is assumed to have the form,
Evolution of solution mean and variance along the centerline of the domain, y ¼ 0:5, and the corresponding ALS approximation with M ¼ 4 and
10�4. (a) Evolution of the solution mean for analysis times t ¼ 20Dt;70Dt;150Dt, and (b) evolution of the solution variance for analysis times
t;70Dt;150Dt.
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vxðx;xÞ ¼ v0yð1� yÞ þ rv
Xdv

k¼1

1

k1=2 cosð2kpxÞ sinð2kpyÞfkðxÞ

vyðx;xÞ ¼ rv
Xdv

k¼1

1

k1=2 sinð2kpxÞð1� cosð2kpyÞÞfkðxÞ:

ð36Þ
The subsequent analysis are done with v0 ¼ 0:64;rv ¼ 0:0032; dv ¼ 20. Random variables ffkgdv
k¼1 are also i.i.d. uniformly

distributed on [�1,+1] and are independent of fykg
da
k¼1 in Eq. (35).

4.2.1. Discretization schemes
4.2.1.1. Spatial-temporal discretization. The proposed method has the flexibility to accommodate any desirable spatial-tem-
poral discretization of a given SPDE as far as it satisfies the usual discretization requirements such as stability and well-
posedness. In the present study an implicit-central difference scheme with a uniform cartesian grid of size
Dx ¼ Dy ¼ 1=120 and Dt ¼ 0:01 is used for spatial-temporal discretization of Eq. (34). The analysis is performed till
T ¼ 1:5 to let the scalar u decay sufficiently from its initial value.

4.2.1.2. Random discretization. A tensor-product grid with Legendre–Gaussian quadratures of size M ¼ 3;4 along the range of
random variables fykg

da
k¼1 and ffkgdv

k¼1 is considered to construct the approximation.

4.2.2. Results
The performance of the ALS algorithm in estimating the temporal mean and variance of u is investigated. Analyses are

carried out with M ¼ 3;4 in combination with � ¼ 3	 10�3;2	 10�3;1	 10�3;7	 10�4;5	 10�4. For the first analysis time
step, the initial approximation rank ru ¼ 1 is selected and the algorithm is executed to achieve the target accuracy. For the
subsequent time steps, the solution is initialized based on the solution of the previous time step with a rank that is minimum
of 1 or ru � 3. This will significantly reduce the overall computational cost as opposed to reseting the initial rank to ru ¼ 1 for
all time steps.

Fig. 4 shows the evolution of the solution rank with respect to different analysis time steps and accuracies �. Notice that
while u is 30-dimensional, the rank ru never exceeds 12 during the entire analysis. In general, depending on the nature of the
problem, the solution rank may decrease or increase in time. With sufficiently small time steps and by choosing the subse-
quent solution rank slightly smaller than that of the previous time step, one can achieve a rather minimal computation for
the current time step.

The convergence of the mean and variance of the solution corresponding to three different analysis time steps is illus-
trated in Fig. 5. Similar to other uncertainty propagation schemes, e.g. stochastic Galerkin and stochastic collocation
schemes, the proposed approach in its present form suffers from the long time integration: the accuracy of approximation
deteriorates with respect to time. This, for instance, can be observed by comparing the magnitude and decay of relative var-
iance error as a function of time in Fig. 5. A brute force approach to eliminate this issue is to simultaneously increase M and
decrease � in time.

Finally, the evolution of solution mean and variance and the corresponding finest conducted approximation, M ¼ 4 and
� ¼ 5	 10�4, along the centerline of the physical domain, y ¼ 0:5, is depicted in Fig. 6.
5. Conclusion

The present study tackles the issue of curse of dimensionality associated with the approximation of high-dimensional sto-
chastic partial differential equations. The proposed method is based on the low-rank separated representation of multivar-
iate functions and an alternating least-squares (ALS) algorithm that minimizes the difference between the quantity to be
estimated and the corresponding separated representation. This is considered to be a generalization of the singular value
decomposition technique without being optimal. The number of required operations, hence the computational cost, and also
the memory requirements for the proposed scheme is formally linear with respect to the dimension of the underlying prob-
ability space in which the solution exists. This is, in general, a significant advantage over the widely used stochastic Galerkin
and collocation schemes when solving problems with large number of random variables.

The proposed ALS algorithm is verified by an a priori error analysis of the separated solution and through its application to
a simple 1D elliptic SPDE using the method of manufactured solution. Components of the arising error have been identified
and have been shown to decay when the analysis is refined. The proposed algorithm is furthermore applied to estimate the
first two statistics of the solution of a 2D scalar transport equation with uncertain diffusion and inflow velocities. The exis-
tence of a low-rank separated solution to an example problem with a high-dimensional probability space has been observed.
Furthermore, the ability of the ALS scheme to capture the low-rank separated approximate solution is verified in both
numerical experiments.

The effect of long time integration has been investigated briefly in a numerical experiment. The target accuracy, �, and the
number of collocation points, M, along the range of each random variable in the ALS algorithm can be adjusted a priori to
achieve a certain accuracy at the final analysis time. However, this might require a relatively small � (large separation rank)
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to begin with, thus making the proposed procedures not as efficient. Similar to the case of stochastic Galerkin and collocation
schemes, further studies are needed to improve the efficiency of the proposed approach for long time integrations of unstea-
dy problems.
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